skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Zhaoyou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bosonic pure-loss channel, which represents the process of photons decaying into a vacuum environment, has zero quantum capacity when the channel’s transmissivity is less than 50%. Modeled as a beam splitter interaction between the system and its environment, the performance of bosonic pure-loss channel can be enhanced by controlling the environment state. We show that by choosing the ideal Gottesman-Kitaev-Preskill (GKP) states for the system and its environment, perfect transmission of quantum information through a beam splitter is achievable at arbitrarily low transmissivities. Our explicit constructions allow for experimental demonstration of the improved performance of a quantum channel through passive environment assistance, which is potentially useful for quantum transduction where the environment state can be naturally controlled. In practice, it is crucial to consider finite-energy constraints, and high-fidelity quantum communication through a beam splitter remains achievable with GKP states at the few-photon level. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Quantum transducers convert quantum signals through hybrid interfaces of physical platforms in quantum networks. Modeled as quantum communication channels, performance of unidirectional quantum transducers can be measured by the quantum channel capacity. However, characterizing performance of quantum transducers used as bidirectional communication channels remains an open question. Here, we propose rate regions to characterize the performance of quantum transducers in the bidirectional scenario. Using this tool, we find that quantum transducers optimized for simultaneous bidirectional transduction can outperform strategies based on the standard protocol of time-shared unidirectional quantum transduction. Integrated over the frequency domain, we demonstrate that rate region can also characterize quantum transducers with finite bandwidth. 
    more » « less
  3. null (Ed.)